Pulsed positive discharges in air: Streamers and beyond

Ute Ebert,

Centrum Wiskunde & Informatica in Amsterdam and Technische Universiteit Eindhoven

I have removed two unpublished slides.

Ask me for the complete file personally,
or follow updates on my publication site www.cwi.nl/~ebert

Scientific computing: Hundsdorfer, Camporeale et al

Centrum Wiskunde & Informatica in Amsterdam

Technische Universiteit Eindhoven

Plasma physics: Nijdam, van Veldhuizen et al

Electrical engineering: Pemen, van Heesch, van Deursen

X-ray pulses from approaching negative lightning leaders

Terrestrial Gamma-Ray Flashes into space

Streamer to leader transition with lightning surge generator, at 1 MV

by Kochkin, Nguyen & van Deursen at TU Eindhoven

+1 MV
lightning surge
on upper
electrode
in STP air

1 m gap

Each shot is a different discharge.

Exposure time increases per shot.

[Kochkin, Nguyen, van Deursen, Ebert, J Phys D 2012]

Positive streamers,

negative counterstreamers,

transition to leader

Hard X-rays (>200 keV) from positive "sparks"

1 MV over 1 m

X-ray source:

Negative streamers!

Typical energies: ~200 keV

[Kochkin, Nguyen, van Deursen, Ebert, J Phys D 2012]

X-rays and \(\gamma\text{-rays} \) due to electron run-away and Bremsstrahlung

Generation of electrons and photons

Impact ionization e-n-Bremsstrahlung

e-e-Bremsstrahlung

$$e^- + M$$

$$\rightarrow$$
 2 e⁻ + M⁺

$$\rightarrow$$
 e⁻ + M + γ

$$\rightarrow$$
 e⁻ + M + γ \rightarrow 2 e⁻ + M⁺ + γ

[Koehn, Ebert, Mangiarotti, J. Phys. D 2014]

Positive streamers

[Kochkin et al, J Phys D 2012]

Negative streamers

[Kochkin et al, J Phys D 2014]

Needle-plane electrodes, air, 1 bar, 300 K

(with photo-ionization)

Positive streamer stays narrow

- → field more enhanced
- → faster

[Luque, Ratushnaya, Ebert, J Phys D 2008]

Towards a multi-streamer theory

Electrodynamic characterization of streamer head by E_{max} and R

$$n_{interior} \approx n(E_{max})$$
 [Li, JAP 2007 and earlier]

$$v = v(R, E_{max})$$

[Naidis, Phys Rev E 2009]

$$j_{interior} = 2v \epsilon_0 E_{max}/R$$

[Ratushnaya et al.]

Towards a multi-streamer theory

Electrodynamic characterization of streamer head by E_{max} and R

Use charge conservation!

Then the channel interaction and the discharge tree

Electric field

Positive and

with field inversion

negative line charge

[Luque, Ebert, New J Phys 2014]

Include varying diameters, longer time scales: Chemistry, heating and transition to leader ...

Streamer diameters and velocities in STP air

[Briels et al, J Phys D 2008]

Streamer diameters and velocities in STP air

[Briels et al, J Phys D 2008]

Thick streamers very efficiently convert electrical power into chemical radicals for biofuel processing, disinfection, sterilization [van Heesch et al, J Phys D 2008]

Why do streamer diameters differ?

Look at dynamics:

Inception cloud,

destabilization,

streamer emergence.

[Briels et al., IEEE TPS 2008]

Air, 200 mbar, +35 kV

Assuming spherical equipotential cloud: $R_{max} = U/E_c$

Good approximation!

[Nijdam et al, IEEE TPS 2011]

8 kV

Positive streamers in air nitrogen

4 cm gap, 400 mbar, 16 kV voltage pulse

[Briels et al, J Phys D 2008]

Positive streamers in air nitrogen

N₂:O₂ mixtures

100 mbar, 20 kV pulses within 20 ns, 1 Hz

Repetitive voltage pulses of +25 kV and 130 ns duration

Due to electron attachment, photo-ionization ...

Streamer re-ignition in different N₂:O₂ mixtures

[Nijdam, Takahashi, Markosyan, Ebert, PSST 2014]

Streamer re-ignition, here in artificial air at 133 mbar

[Nijdam, Takahashi, Markosyan, Ebert, PSST 2014]

Streamer re-ignition in different N₂:O₂ mixtures

[Nijdam, Takahashi, Markosyan, Ebert, PSST 2014]

Streamer re-ignition in different N₂:O₂ mixtures

~500 reactions: which ones are important?

-> Pathway analysis
[PumpKin-tool, Markosyan et al.,
Comp. Phys. Comm. 2014],
www.cwimd.nl

Quantitatively explained, without fitting!

[Nijdam, Takahashi, Markosyan, Ebert, PSST 2014]

High purity nitrogen, rep. frequency 1 Hz or more

Air, reflected voltage pulse

[Nijdam et al, IEEE TPS 2011]

[Heijmans et al, in prep.]

A streamer: field focussing

Complete system: Zoom:

3D hybrid model

yields electron run-away and X-rays.

[Li et al., JAP 2007, JPD 2008, ..., J Comput Phys 2012]

3D: Negative streamer in STP N₂

in overvolted gap ($E_{back} = -100 \text{ kV/cm}$)

Based on gradient expansion [Li et al., J Comput Phys, 2010]

... systematic new model: [Markosyan, Dujko et al., J Phys D 2013]

Hybrid model

Extended density model approximates propagation well,

but branching occurs too late.

[Li et al., PSST 2012]

BUT

Air, overvolted gap (70 kV/cm) with one free electron initially, no O_2^-

Double headed streamer as in 2D fluid models!

Air, overvolted gap (70 kV/cm) with one free electron initially, and 10³ O₂-/cm³

Global breakdown due to electron detachment!

Air, overvolted gap (70 kV/cm) with one free electron initially, and 10³ O₂-/cm³

Ionization screening time $au_{\rm is} pprox \ln \left(1 + rac{lpha \epsilon_0 E_0}{e n_0}\right)/(lpha v_d)$

For vanishing impact ionization, $\tau_{is} \rightarrow Maxwell$ relaxation time.

[Sun, Teunissen, Ebert, GRL 2013; Teunissen, Sun, Ebert, J Phys D, to appear]

No immediate double-headed streamers in air due to natural O_2^- and detachment

Streamers, leaders, radiation:

- X-rays, γ-rays, positrons generated
 by streamer processes and lightning leaders
- Observations of growth of meter-long sparks with streamers and leaders
- Streamer tree model with consistent charge transport: field inversion

Inception, morphology, memory effects:

- Inception near electrode: from cloud to streamers, dependence on N₂:O₂ ratio and on voltage frequency
- Double pulse experiment and "memory due to ions"
- Streamers can move perpendicular to the electric field

Pulsed positive discharges in air: Streamers and beyond

www.cwi.nl/~ebert for publications and numerical codes

