THE EFFECT OF AN OBSTACLE IN THE ABLATION PLASMA ON THE ELECTRICAL PROPERTIES OF THE OXIDE THIN FILMS

FLORIN GHERENDI*, MAGDALENA NISTOR, NICOLAE B. MANDACHE
National Institute for Lasers, Plasma and Radiation Physics, L.22, P.O.Box MG-32, 077125, Bucharest-Magurele, Romania
florin.gherendi@infim.ro

ABSTRACT
The pulsed electron beam ablation deposition method (PED) was used for growing In$_2$O$_3$ and ZnO transparent oxide thin films with a metal strip placed inside the ablation plasma plume as mechanical obstacle. Pure oxygen was used as working gas. The influence of the obstacle on the properties of the ablation plasma was studied with an ion probe and by resistivity measurements on the deposited thin films respectively. A 16 times reduction of the ion density was evidenced by the ion probe behind the obstacle. The film resistivity varies from $2 \cdot 10^{-3}$ Ω·cm in the obstacle shadow to $3 \cdot 10^{-4}$ Ω·cm in the adjacent (non-shadowed) regions for In$_2$O$_3$ films, while for ZnO films the variation is from 0.6 Ω·cm to $6 \cdot 10^{-3}$ Ω·cm. The increase of the resistivity of the film grown behind the obstacle as compared to the adjacent regions was explained by a reduction of the concentration of oxygen vacancies due to a relatively larger contribution of the oxygen incorporated in the film from the working gas in the lower plasma density region behind the obstacle. The smaller variation in the case of ZnO target was explained by the increased scattering of Zn ions behind the obstacle in comparison to the In ions, due to their smaller mass.

1. INTRODUCTION
In recent years transparent conducting oxide thin films as indium oxide (In$_2$O$_3$) and zinc oxide (ZnO) were widely studied as n-type device materials in transparent thin film transistors due to their excellent optical transmission in visible region, tunability of the electrical properties and chemical stability [1, 2, 3, 4]. The high demand from the consumers for high resolution and large panel displays leads to the necessity of low-cost fabrication of such transistors. One approach is to obtain during a single deposition process a fine spatially tuning of the electrical and optical properties of the oxide film such as self-assembled transparent transistors can be fabricated [5]. This can be accomplished by inserting an obstacle in an ablation plasma plume, leading to a local modification of the electrical film properties [5, 6]. PED is an ablation deposition method [7, 8] similar to the pulsed laser deposition (PLD), but using a pulsed electron beam instead of the laser beam for ablating the target. The main advantage of these methods is that the stoichiometry of the bulk target is preserved in deposited thin films. As an example, stoichiometric, dense, smooth and epitaxial ZnO and In$_2$O$_3$ thin films have been grown by PED with various electrical and optical properties [7-10]. Previously, studies with obstacles in ablation plasma were carried out for PLD [11], with the purpose of improving the film surface quality by reducing the quantity of droplets at the film surface, but without exploring in detail the film properties under obstacle. In this work, the thin films grown by PED are smooth, thus the aim is to investigate the manner in which the presence of an obstacle in the ablation plasma plume influences the electrical properties of semiconducting oxide thin films during a single deposition process.

2. EXPERIMENTAL SETUP
The PED device, described in detail in previous paper [7, 8], generates a 100 ns pulsed electron beam in a channel-spark discharge. The electron source consists of a hollow cathode, a dielectric capillary tube (6 mm diameter and 110 mm length) and a vacuum chamber as grounded anode. The target-substrate distance is 40 mm and the capillary tube is set at an angle of 45°. In the present work, In$_2$O$_3$ and ZnO transparent oxide thin films were grown by PED in 1.3·102 mbar pure oxygen, at a -14kV working voltage and at room temperature on glass substrates. A metal (stainless steel) strip 10 mm wide is placed inside the ablation plasma plume
as obstacle, at a distance of 23 mm from the ablation target. Either an ion probe or a substrate was placed at 17 mm behind the obstacle. The film growth setup is schematically presented in figure 1.

Resistivity measurements were carried out at room temperature on the thin films along the x-axis shown in fig. 1.

In the case of ion probe measurements (figure 2), the probe is placed at the substrate position.

The disc-shaped 4 mm diameter ion probe was enclosed in a metal cylinder having a 2 mm diameter aperture with the role of separating the expanding ablation plume from the background plasma, associated to the discharge which generates the pulsed electron beam. [7, 12].

3. RESULTS

A typical -14 kV high voltage signal is shown in Fig. 3a. The synchronized ion probe signals of the In$_2$O$_3$ ablation plasma for a working pressure of 1.3·10$^{-2}$ mbar oxygen, recorded with and without obstacle, are presented in figure 3b. The ion probe was biased -30 V for repelling the electrons.

All probe signals start with a negative peak due to the fast electrons (which could not be stopped by the 30V reverse bias). These electrons are originating from the pulsed electron beam, being reflected/scattered on the target at large angles, and they are synchronized with the high voltage fall, as it can be seen in figure 3. The ion pulse has a peak occurring at 5.04 µs from the discharge voltage fall time without obstacle, and 5.22 µs with obstacle, respectively. This slight difference could be attributed to the time needed for the ions to bypass the obstacle.

The mean ion energy determined by the time-of-flight method was ~37.5 eV without obstacle and ~35 eV with obstacle. The area under the ion current waveform is a measure of the total number of ions reaching the probe. There is a ratio of ~16 between the areas of the ion current waveforms without obstacle and with obstacle at the same pressure.

In$_2$O$_3$ and ZnO films were grown on glass substrates under same conditions as those used for the ion probe measurements. The comparative film thicknesses for In$_2$O$_3$ and ZnO, measured with spatial resolution using a profilometer, are presented in figure 4.
The thickness measurements indicate a minimum In$_2$O$_3$ film thickness of 20 nm in the middle of the obstacle shadow, 40 times smaller than the 800 nm thickness in the adjacent regions of the film. As it can be seen in figure 4, the ZnO film at the same ambient gas pressure and deposition time is significantly thicker behind the obstacle as compared to the In$_2$O$_3$ film (min \approx100nm vs. min. \approx20nm), even if they have approximately the same thickness in the non-shadowed wings. We explain this by the smaller mass of Zn ions (\approx65 a.m.u. as compared to \approx118 a.m.u. for In), which determines a smaller mean free path in the ambient gas [13], otherwise said a more significant scattering of the Zn ions by the working gas. More scattering is leading to a higher density of the Zn ions behind the obstacle, therefore a greater thickness of the film grown in this region in comparison with the In$_2$O$_3$ film. Both ZnO and In$_2$O$_3$ films have a noticeable build-up region in the vicinity of the obstacle shadow. Indeed, films grown in separate experiments without obstacle at the same pressure and high voltage have a thickness of \approx400 nm, compared to the \approx800 nm seen in figure 4. Taking into account the build-up thickness, which approximately doubles the thickness of the film grown without obstacle, an In$_2$O$_3$ film would be in fact only 20 times thinner behind the obstacle, matching the \approx16 times reduction of the plasma density indicated by the ion probe. The remaining difference could be explained by the fact that the ion probe gives no information about the neutral species in the plasma.

A possible explanation for the resistivity increase of the films grown behind the obstacle could be given by a reduction of the concentration of oxygen vacancies in that film region [5, 6]. The flux of the ablation plasma is reduced behind the obstacle compared to the adjacent regions, while the density of the oxygen remains the same. It has been previously shown in [15] that there is a larger percent of the ambient oxygen incorporated in the film when the ratio between the oxygen flux and ablated species flux is higher. Hence, due to the smaller plasma density behind the obstacle, there is a larger percent of oxygen incorporated in the film from the working gas, leading to a smaller density of oxygen vacancies in that region, and thus to a higher film resistivity.

The role of the surrounding oxygen density in the higher resistivity is confirmed by experiments.
without obstacle at higher oxygen pressure. For In$_2$O$_3$ films grown at 2·10$^{-2}$ mbar the resistivity is several orders of magnitude greater, as well as for ZnO films grown at pressures above 1.5·10$^{-2}$ mbar.

Based on these results, self-assembled source-channel-drain structures for transparent thin film transistors were produced using the PED method in a single deposition process, by downsizing the obstacle geometry to a 300 μm diameter wire placed at 100 μm distance from the substrate [5].

4. CONCLUSIONS

The role of the obstacle inserted in the ablation plasma was studied by ion probe and its effect on the In$_2$O$_3$ and ZnO films by resistivity measurements. A slightly smaller mean ion energy (35 eV vs. 37.5 eV) and 16 times smaller total number of ions reaching the probe were observed behind the obstacle, which correlate with the 40 times smaller film thickness measured by profilometry under obstacle. The film resistivity increases by orders of magnitude behind the obstacle, and it has been proved that this effect is due to the additional incorporation of the oxygen from the working gas, and not to the smaller thickness of the film. The resistivity increase is less prominent for ZnO films grown with obstacle than that obtained for In$_2$O$_3$ films. These results show that the tuning of the electrical and optical properties in a single oxide film is possible for future applications in transparent electronics.

REFERENCES