FORMATION OF VIBRATIONAL DISTRIBUTION FUNCTION OF ELECTRONICALLY-EXCITED $N_2(A^3\Sigma_u^+)$ MOLECULES IN NITROGEN DISCHARGE PLASMA

N A POPOV

Skobelt'syn Institute of Nuclear Physics, Moscow State University, Moscow, 119991, Russia. NPopov@mics.msu.su

ABSTRACT

A model on formation of the vibrational distribution function of metastable electronically excited $N_2(A^3\Sigma_u^+,v)$ states in nitrogen discharge plasma is presented. It is assumed that the probability of population of $N_2(A^3\Sigma_u^+,v)$ states by collisional deactivation of $N_2(B^3\Pi_g,v')$ molecules is proportional to the Franck-Condon factors of corresponding $N_2(B^3\Pi_g,v') \rightarrow N_2(A^3\Sigma_u^+,v)$ transitions, i.e. that the quenching is essentially vertical. The results of calculations carried out under this assumption are in agreement with measured $N_2(A^3\Sigma_u^+,v)$ vibrational distribution at the end of pulsed high current discharge in nitrogen.

1. INTRODUCTION

Electronically excited $N_2(A^3\Sigma_u^+,v)$ molecules play an important role in gas discharge kinetics in nitrogen and nitrogen-oxygen mixtures [1-4]. In mixtures with a small fraction of oxygen a considerable part of the discharge energy, spent on excitation of electronic degrees of freedom, accumulates in $N_2(A^3\Sigma_u^+)$ state [3]. An important feature of many reactions with $N_2(A^3\Sigma_u^+,v)$ molecules is a dependence of reaction rates and product ratios on a number of the vibrational level.

In a number of recent works, the methods of laser-induced fluorescence (LIF) [2] and intracavity laser absorption spectroscopy at the transitions of the 1^+ system of nitrogen were used for measuring the density of $N_2(A^3\Sigma_u^+)$ molecules [5]. Populations of only a few

vibrational levels of $N_2(A^3\Sigma_u^+)$ can be found using these techniques. Thus a model describing the formation and evolution of the vibrational distribution function of electronically excited $N_2(A^3\Sigma_u^+, v)$ molecules in nitrogen discharge plasma is needed for more detailed comparison of experimental results with numerical simulations.

2. MODEL DESCRIPTION

In nitrogen discharge plasma the population of $N_2(A^3\Sigma_u^+, v)$ state occurs mainly due to the radiative-collisional quenching of levels with high energies $N_2(B^3\Pi_g)$, $N_2(B'^3\Sigma_u^-)$, $N_2(W^3\Delta_u)$ and others, the excitation by direct electron impact is not very important [3].

Analysis of experimental results on the population of vibrational levels of electronically excited N₂ states due to recombination of N(⁴S) atoms in the afterglow of nitrogen discharge (P = 20 - 760 Torr) is presented in [6]. It is shown that the most part of the excitation flux, passed through the levels N₂(B³Π_g,v=0-12), also passes through the levels N₂(A³Σ⁺_u,v'=0,1). This evidences that in quenching of N₂(B³Π_g,v) molecules the reaction

$$N_{2}(B^{3}\Pi_{g}, v) + N_{2}(X^{1}\Sigma_{g}^{+}) \rightarrow (1)$$

$$N_{2}(A^{3}\Sigma_{u}^{+}, v') + N_{2}(X^{1}\Sigma_{g}^{+}, v'')$$

is dominant. Similar conclusion based on analysis of experimental data has been made in [7]. This conclusion is really important since in several works the authors assumed the reaction $N_2(B^3\Pi_g, \nu) + N_2(X) \rightarrow N_2(X, \nu') + N_2(X, \nu'')$ as a dominant quenching channel of $N_2(B^3\Pi_g, \nu)$ state.

It is important to underscore that the question about vibrational distribution function of $N_2(A^3\Sigma_{\mu}^+, v)$ molecules generated in reaction (1) is still open. Calculations of the temporal evolution of N₂($A^{3}\Sigma_{\mu}^{+}, v=0-8$) vibrational levels populations in the afterglow of pulsed high current electron beam and RF discharge in nitrogen have been performed in [3]. Comparison of numerical and experimental results allowed improving the rate constants of reaction

$$N_{2}(A^{3}\Sigma_{u}^{+},v) + N_{2}(X^{1}\Sigma_{g}^{+},v'=0) \rightarrow (2)$$

$$N_{2}(A^{3}\Sigma_{u}^{+},v-2) + N_{2}(X^{1}\Sigma_{g}^{+},v'=1)$$

Data obtained in [3] were used in this study. Having uniformity of all parameters in the discharge the following expression for the electric field E was used in the present paper:

$$E = \frac{I}{e\mu_e N_e S}, \qquad (3)$$

where *I* is the discharge current, μ_e is the electron mobility (function of *E/N*), N_e is the electron density, *S* is the area of the discharge cross-section.

Dependences of the rates of excitation, ionization and dissociation of molecules by the electron impact on the reduced electric field E/N value are determined from the calculations of the electron energy distribution function (EEDF) using the BOLSIG+ code [8]. Main processes with neutral and charged particles and the rate constants are taken from [9]. Detailed description of the model was given in [3].

3. SIMULATION RESULTS

3.1. Time evolution of population difference between $N_2(A^3\Sigma_u^+, v=0)$ and $N_2(B^3\Pi_g, v=2)$ states were measured in [4] in a positive column of DC nitrogen pulsed discharge. The discharge was created in a 14 mm inner diameter, 25 cm long pyrex tube. High-voltage pulses of about 2 kV of $\tau_{imp} = 8 - 20 \ \mu s$ duration and 20 Hz repetition rate were applied to produce bulk discharge in pure nitrogen.

Fig. 1 shows the discharge current [4] and the calculation results of temporal evolution of the reduced electric field E/N under the conditions of [4]. It is clear that the main energy deposition

occurs at E/N = 120 - 130 Td. The population difference between $N_2(B^3\Pi_g, v = 2)$ and $N_2(A^3\Sigma_u^+, v=0)$ states was evaluated from integrated high-resolution laser absorption/gain profiles. Optical gain, due to the population inversion, was present during the first 3 - 6 µs of the discharge pulse.

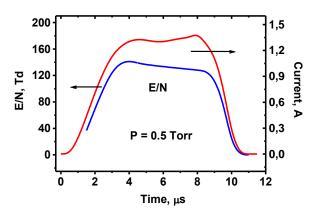
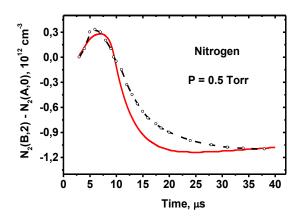



Fig. 1. Temporal evolution of the reduced electric field E/N and the discharge current under the conditions of [4]: P = 0.5 Torr.

The population difference was about $\Delta N_{BA} = 3 \cdot 10^{11} \text{ cm}^{-3}$ at the peak current at 6 - 7 µs. In the afterglow the ΔN_{BA} value decreases to $\Delta N_{BA}^{0} = -1.1 \cdot 10^{12} \text{ cm}^{-3}$. **Fig. 2** shows the experimental data and calculation results of the population difference between $N_2(B^3\Pi_g, v=2)$ and $N_2(A^3\Sigma_u^+, v=0)$ at P = 0.5 Torr under the conditions of Fig. 1. The main population of the $N_2(B^3\Pi_g, v=2)$ state in this case occurs by electron impact from the ground $N_2(X^1\Sigma_g^+)$ state and quenching reaction of electronically excited $N_2(C^3\Pi_u)$ molecules.

Fig. 2. Temporal evolution of number density difference: $[N_2(B^3\Pi_g, v=2)] - [N_2(A^3\Sigma_v=0)]$ under the conditions of [4]. The full curve represents experimental data, the dotted curve – calculation results.

The production of $N_2(A^3\Sigma_u^+, v=0)$ molecules is associated with radiative - collisional quenching of $N_2(B^3\Pi_g, v)$ state in the reaction (1). As can be seen, the calculation results are consistent with the experimental data, which indicates the adequacy of the description of the $N_2(A^3\Sigma_u^+, v=0)$ molecules production under given conditions [4].

3.2. As it was mentioned earlier at present there is no data on the vibrational distribution of $N_2(A^3\Sigma_u^+, v)$ molecules, produced at quenching of $N_2(B^3\Pi_g)$ by nitrogen molecules. In given work it is assumed that the population probability of $N_2(A^3\Sigma_u^+, v)$ in the process of collisional deactivation of $N_2(B^3\Pi_g, v')$ is proportional to the Franck - Condon factors (FCF) of corresponding $N_2(B^3\Pi_g, v') \rightarrow N_2(A^3\Sigma_u^+, v)$ transitions.

For validation of this assumption the calculation results of $N_2(A^3\Sigma_u^+,v)$ vibrational distribution have been compared with the experimental data of [5]. In [5] by means of intracavity laser absorption spectroscopy the vibrational distribution of $N_2(A^3\Sigma_u^+,v=2-6)$ states have been measured after pulsed ($\tau_{imp} = 700$ ns) high current discharge in nitrogen at P = 230 Torr and $T_0 = 300$ K.

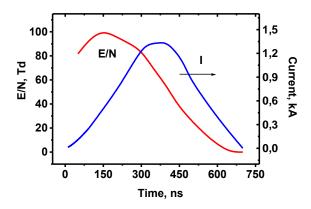
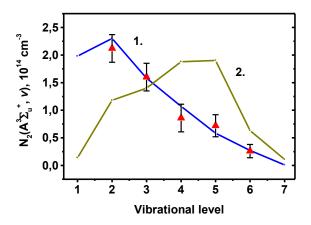



Fig. 3. Temporal evolution of the reduced electric field E/N and the discharge current in nitrogen under the conditions of [5].

The area of electrodes was $5 \times 50 \text{ cm}^2$ with the interelectrode distance d = 4 cm. Having uniformity of the discharge parameters the expression (3) for the electric field *E* was also used under given conditions. Fig. 3 shows the current pulse oscillogram [5] and the calculation results of temporal dynamics of the reduced electric field *E/N* under the conditions of [5]. It is clear that the main energy deposition occurs at

E/N = 50 - 100 Td. Specific energy deposited into the discharge achieved W = $7.5 \cdot 10^{-3}$ eV/molecule, and that agrees with the experimental estimate ($7.8 \cdot 10^{-3}$ eV/molecule).

Fig. 4. Comparison between experimental [5] and predicted $N_2(A^3\Sigma, v = 1 \div 7)$ vibrational level populations at the end of discharge at $t = 0.7 \ \mu s$. The dots are experimental data from [5], curves (1, 2) – are calculation results (see text).

The calculation results of vibrational distribution of $N_2(A^3\Sigma_{\mu}^+, v)$ and the experimental data of [5] are shown in fig. 4. In this case the main excitation of N₂($A^{3}\Sigma_{\mu}^{+}, v$) molecules is due to the quenching of $N_2(B^3\Pi_g)$ state. The calculation results and experimental data of [5] are taken for $t = 0.7 \mu s$, correspondent to the end of the current pulse. The calculations made on the assumption, that the population probability of $N_2(A^3\Sigma_{\mu}^+, v)$ in the process of collisional quenching of $N_2(B^3\Pi_a)$ was proportional to the Franck-Condon factors of the correspondent $N_2(B^3\Pi_g, v') \rightarrow N_2(A^3\Sigma_u^+, v)$ transitions, are shown with curve 1. A good agreement with measurements of [5] is evident. In conditions under consideration the characteristic times of reaction (2) for vibrational levels v = 5, 4, 3 amount to 0.44, 0.94 and 2.9 µs, respectively. Therefore at time scales $t \le 1 \ \mu s$ an intensive quenching of $N_2(A^3\Sigma_u^+, v \ge 4)$ vibrational levels and hence populating of levels v = 2 and 3 take place. And this is the main reason for relative overpopulation of the level v =2 at $t = 0.7 \mu s$ observed in fig. 4 (curve 1).

It should be noted that in a few works it is assumed that in a quenching process of N₂(B³Π_g) state the high vibrational levels of N₂(A³ Σ_{u}^{+} ,*v*) are mainly populated:

$$N_{2}(B^{3}\Pi_{g}) + N_{2}(X^{1}\Sigma_{g}^{+}) \rightarrow (4)$$

$$N_{2}(A^{3}\Sigma_{u}^{+}, v=6,7) + N_{2}(X^{1}\Sigma_{g}^{+})$$

For validation of this assumption the calculations with an allowance for the quenching of $N_2(B^3\Pi_g)$ state in accordance with (4) have been carried out. **Fig. 4 (curve 2)** illustrates the results of calculations under the conditions of experiment [5]. Obtained results obviously differ from the experimental data [5]. Thus the assumption about the dominant populating of high vibrational levels of $N_2(A^3\Sigma_u^+, v \ge 6)$ owing to the collisional quenching of $N_2(B^3\Pi_g)$ state seems to be invalid.

4. CONCLUSIONS

model on formation of vibrational Α distribution function of metastable electronically excited $N_2(A^3\Sigma_{\mu}^+, v)$ states in gas discharge plasma is presented. In nitrogen discharge plasma the excitation of $N_2(A^3\Sigma_u^+)$ molecules takes place mainly by deactivation of electronic states with high energies. In the paper it was assumed that the population probability of $N_2(A^3\Sigma_{\mu}^+, v)$ in the process of collisional quenching of $N_2(B^3\Pi_g)$ state is proportional to the Franck-Condon factors of correspondent transitions $N_2(B^3\Pi_g, v') \rightarrow N_2(A^3\Sigma_{\mu}^+, v)$, i.e. that the quenching is essentially vertical. The results of calculations carried out under this assumption are in agreement with measured data of $N_2(A^3\Sigma_u^+, v)$ vibrational distribution at the end of pulsed high current discharge in nitrogen at P =230 Torr [5].

It is also shown that the assumption about preferred population of high vibrational levels $N_2(A^3\Sigma_u^+, v \ge 6)$ in the process of collisional quenching of $N_2(B^3\Pi_g)$ is not valid since in this case the modeling results are inconsistent with the experimental data of [5].

Time evolution of population difference between $N_2(A^3\Sigma_u^+,v=0)$ and $N_2(B^3\Pi_g, v=2)$ states in a positive column of nitrogen glow discharge was calculated under the conditions of experiments [4]. The calculation results are consistent with the experimental data, which indicates the adequacy of the description of the $N_2(A^3\Sigma_u^+,v=0)$ molecules production under given conditions.

ACNOWLEDGMENTS

This work was partially supported by US AFRL, award FA2386-13-1-4064 and RFBR-CNRS Grant No11-02-91063-a (PICS 5745).

REFERENCES

[1] V. Guerra, P.A. Sa and J. Loureiro "Role played by the $N_2(A^3\Sigma_u^+)$ metastable in stationary N_2 and N_2 -O₂ discharges" J. Phys. D: Appl. Phys. **34**, 1745, 2001.

[2] M. Šimek, P.F. Ambrico and V. Prukner "Formation of $N_2(A^3\Sigma_u^+\nu=0-3)$ metastable species in decaying nitrogen streamer", J. Phys. D: Appl. Phys. **46**, 355204, 2013.

[3] N.A. Popov "Vibrational kinetics of electronically-excited $N_2(A^3\Sigma_u^+ v)$ molecules in nitrogen discharge plasma", J. Phys. D: Appl. Phys. **46**, 355204, 2013.

[4] E. Augustyniak and J. Borysow "Time evolution of the population inversion between $(A^{3}\Sigma_{u}^{+}, v)$ " and $(B^{3}\Pi_{g}, v)$ states in the positive column of a nitrogen pulsed discharge" J. Phys. D: Appl. Phys. **28**, 55, 1995.

[5] V.V. Apollonov, G.G. Baitsur et al. "Metastable nitrogen excitation dynamics in selfsustained volume discharge" Atmospheric and Oceanic Optics, **1**, 15, 1988.

[6] L.S. Polak, D. I. Slovetskii and R.D. Todesaite "Quenching rate coefficients of metastable $N_2(A^3\Sigma_u^+, v=0,1)$ and $N(^2P)$ particles by nitrogen atoms and molecules" High Energy Chemistry, **10**, 65, 1976.

[7] V. Guerra and J. Loureiro "Electron and heavy particle kinetics in a low-pressure nitrogen glow discharge" Plasma Sources Sci. Technol. **6**, 361, 1997.

[8] G.J. Hagelaar and L.C. Pitchford "Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models" Plasma Sources Sci. Technol. **14**, 722, 2005.

[9] N.A. Popov "Associative ionization reactions involving excited atoms in nitrogen plasma" Plasma Physics Reports, **35**, 436, 2009.