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ABSTRACT 
 
The main goal of the present communication is 
to test, in terms of computing time cost and 
precision, Poisson equation solvers in a cubic 3D 
configuration for further applications in 3D 
streamer simulation using High Performance 
Parallel Computing. The Poisson equation is 
discretized with the Finite Volume Method and 
the cubic domain is divided into n×n×n nodal 
points (n being 50, 100 or 200). The chosen 
configuration could be a basic block of a larger 
discretized domain distributed on several 
processors. The upper and the lower planes of 
the cubic domain are respectively the anode and 
the cathode, while the other lateral surfaces are 
open space. The calculation is either performed 
for the geometric field (Laplace equation) or 
takes into account the propagation of an 
analytical space charge density.  
 
1. INTRODUCTION 
 
For a short high pulsed voltage condition, the 
breakdown corona discharge regime is 
characterized by the propagation of many micro-
discharges, presenting a large branching structure 
[1]. However, for a DC high voltage condition, 
the branching structure rapidly vanishes and a 
mono-filament micro-discharge occurs, 
characterized by the development of a primary 
and a secondary streamer [2]. In the field of the 
fluid model approximation, this kind of DC 
micro-discharge can be simulated using a 2D(r,z) 
cylindrical grid domain that reproduces the 

symmetry of the mono-filament (see e.g. [3] and 
[4]). Obviously, for high pulse voltage 
conditions, the cylindrical symmetry is 
completely broken due to the complex branching 
structure of the global discharge. It is therefore 
necessary to upgrade the simulations to a 
Cartesian 3D geometry. Nevertheless, it remains 
a great challenge to simulate in 3D a complete 
corona breakdown because of the multi-scale 
nature of the micro-discharges [5]. Indeed, a 
strong spatial grid refinement is necessary in 
order to capture the dynamics of the multiple 
streamer heads and the interaction between each 
micro-discharge. In the last decades, increasing 
computer power has permitted the 3D simulation 
of micro-discharges using classical first order 
fluid models and/or hybrid calculations [6-9]. 
These previous works were devoted to the 
simulation of the very beginning of the discharge 
development, the 3D grid refinement 
optimization, and the effects of several physical 
models and assumptions on the propagation and 
the splitting of an initial streamer channel. The 
new challenge is to simulate the development 
and propagation of a complete breakdown corona 
discharge, involving some tens of micro-
discharges interacting with each other during 
hundreds of nanoseconds over a spatial scale on 
the order of centimetres. This new challenge can 
be overcome thanks to the use of High 
Performance Parallel Computing. However, 
significant attention must be paid to the 
performance of the numerical solvers used and 
their ability to maintain their efficiency as the 
number of individual compute nodes is 



increased. Indeed, in the case of distributed 
memory parallelisation using the Message 
Passing Interface (MPI) library, the decrease in 
computing time with an increase in the number 
of compute nodes should be maintained as long 
as possible.  
 
In the present work and as a first step, we have 
studied the performance of several elliptic 
equation solvers on one compute node of the 
High Power Computer Hyperion [10]. We focus 
our study on the solution of elliptic equations 
because they are essential for the calculation of 
the potential and in some cases for the photo-
ionisation processes. Furthermore, their 
numerical processing represents more than 90% 
of the total computing time needed to solve the 
set of equations involving in the classical first 
order fluid model.  
 
The first section of the present paper describes 
the simulation conditions while the second and 
the third sections are respectively devoted to 
comparing the results obtained and to presenting 
the main conclusions and perspectives of this 
work. 
 

2. SIMULATION CONDITIONS  
 
We have tested several elliptic equation solvers 
for the calculation of the electric potential using 
the Poisson equation with or without (Laplace 
equation) the addition of the propagation of an 
analytical space charge density. The Poisson 
equation is discretized with the Finite Volume 
Method on a Cartesian cubic domain of 1mm3 
divided into n3 nodal points, n being equal to 50, 
100 or 200. The chosen configuration could be a 
basic block of a larger discretized domain 
distributed on several compute nodes. The upper 
and the lower planes of the cubic domain are 
respectively the anode (6kV) and the cathode 
(0kV) electrode, while the other lateral surfaces 
are open space (i.e. Neumann conditions are 
applied with the potential derivative equal to 
zero on the direction perpendicular to each 
lateral surface). The space charge density has a 
Gaussian shape with a full-width at half- 
maximum equal to 50µm. The maximum 
propagates along the vertical symmetry axis of 
the cube from 0.4mm until 0.8mm with a 
velocity of 106m.s-1. 
 

After the discretization on the 3D Cartesian 
domain, the elliptic Poisson equation can be 
expressed in the form of a linear matrix system: 
 

bAv =    (1) 
 

where A is a sparse matrix (of n3×n3 dimension), 
v  the potential vector and b  the space charge 
density vector involving the potential boundary 
conditions. 
In order to solve this linear matrix system, we 
use the iterative solvers proposed in the LIS 
library [11]. We focus our study on the iterative 
methods because they can be very efficient, 
especially for time dependant problems where 
the solution at a previous time, t , can be used as 
an initial solution to begin the new iteration 
process and converge rapidly towards the 
solution at time tt Δ+ . After preliminary tests 
made with the twenty-two proposed methods in 
the LIS library, we compare the efficiency of 3 
selected ones: IDR(s), BiCSTAB(l) and the 
classical SOR(ω). In all cases, the convergence 
criterion is defined as follow: 
 

ε<
−

b
bAv

    (2) 

 
where  stands for the norm 2 of the 
corresponding vectors. ε  is the chosen 
precision, varying from 10-8 to 10-6. Furthermore, 
the maximum number of iterations was fixed at 
9000. It means that the solver failed when the 
solution has not converged towards the chosen 
precision after a maximum of 9000 iterations. 
 

3. RESULTS AND ANALYSIS 
 
The three selected methods depend on specific 
parameters s, l or ω. Therefore, preliminary tests 
were made in order to choose the best values that 
accelerate the numerical convergence of each 
solver. It was found that taking s=3, l=2 and 
ω =1.6 enhances the efficiency of the methods in 
terms of precision and computing time.  
 
3.1 Solution of the Laplace equation 
 
Fig. 1, 2 and 3 show the efficiency of the 3 
solvers in terms of computing time versus 
precision for respectively n=50, 100, and 200. 
The method SOR(1.6) failed for n=100 and 

810−=ε  and for all precisions when n=200. The 



results indicate that the general trends of IDR(3) 
and BiCSTAB(2) are very similar, with 
BiCSTAB(2) converging slightly more rapidly 
for a given precision (excepted for n=50 and 

810−=ε ).  
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Fig.1: Efficiency of the 3 solvers for n=50 
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Fig.2: Efficiency of the 3 solvers for n=100 
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Fig.3: Efficiency of 2 solvers for n=200 
 
It is interesting to note that a gain of 100 in the 
precision (i.e. by reducing the precision from 10-6 
to 10-8) produces a very small increase of 
computing time especially for the IDR(3) and the 
BiCSTAB(2) methods. For example, with n=200 

in Fig.3, the IDR(3) and BiCSTAB(2) solvers 
require only 1.6% and 1.9% more computing 
time to converge from 10-6 to 10-8. In both cases, 
this corresponds to fewer than 10 additional 
iterations. Still considering the two more 
efficient methods, and with 810−=ε , it can be 
seen that multiplying the number of cells by 8 
increases the computing time by a factor of about 
16. Indeed, from 503 to 1003 (=8×503) to 
2003(=8×1003), the mean computing time for 
both methods increases from 0.49s to 
8.07s(≈16.5×0.49s) and from 8.07s to 
127s(≈15.7×8.07s), respectively. 
 
3.2 Solution of the Poisson equation 
 
In this section, and following the previous 
results, only the case n=50 is chosen for a 
comparison of the 3 tested methods. Prior to 
considering the propagation of the space charge 
density profile, we have tested the convergence 
of the 3 solvers when the maximum of the 
Gaussian space charge is fixed on the vertical 
cube axis, 0.4mm above the cathode plane.  The 
results obtained are presented in Fig.4. For 
example, Fig.4 shows that for a precision of 

710−=ε , the IDR(3) solver requires nearly twice 
as many computing time to converge to a 
solution for the Poisson equation as for the 
Laplace equation.  
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Fig.4: Relationship between the computing time required  for 
solving the Poisson equation versus the computing time needed for 
solving Laplace equation (n=50) 
 
By comparison, the SOR(1.6) method remains 
very stable and, for a given precision, requires 
the a similar computing time for both equations. 
It is noteworthy that Fig.4 is also representative 
of the mean computing time needed for the three 
solvers to converge at each time step t when the 
Gaussian space charge density propagates from 



0.4mm to 0.8mm along the vertical tube axis. It 
means that for n=50, the initial solution used to 
start the iteration process at a given time step t 
has no influence on the computing time. Indeed, 
the computing time should be reduced, if the 
initial solution chosen at time tt Δ−  is not so far 
from the solution at time t so that the number of 
iterations is significantly reduced. Further tests 
are required for n=100 and n=200 in order to see 
if the increase of the space grid resolution will 
have an influence on the mean computing time at 
each time step evolution.  
 

4. CONCLUSION AND PERSPECTIVES 
 
The present preliminary results indicated that the 
BiCSTAB(2) iterative method presents the best 
efficiency in terms of precision versus computing 
time whatever the tested configuration (Laplace 
or Poisson equation with or without the 
propagation of a space charge density). However, 
more recent simulations have shown that the 
SOR(ω) method is very sensitive to the value of 
ω which also depends on the value of n (i.e. the 
space grid definition). The further works will be 
focussed on the SOR(ω) optimisation, the 
adjunction of a direct method (e.g. MUMPS) and 
the study of the computation time efficiency with 
the number of computation nodes. 
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