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ABSTRACT

The present paper is an extension of previous re-
search related to the problem of the leader of light-
ning formation. It was introduced earlier that a
homogenous charged media could become unsta-
ble under some initial conditions in [1], [4] in one
dimensional case. We present here an investiga-
tion of such kind instability in two dimension case
also.

1. INTRODUCTION

Since the middle of the last century problems of
stability of charged jet flow occupy the central
place in EHD. But, the fluid equations are difficult
to handle because of their nonlinearity and mathe-
matical complexity as a result.

One of the approaches is to study the influence of
an electric field on a velocity field. E. Moreau and
O.Vallee considered in [2] an electric field as an
elastic term of force for some model plasma prob-
lem. An analytic resolution of a one dimensional
problem faced in ionised media was proposed,
when the electric field is dominant in front of the
magnetic field (electro hydrodynamical approach).

This situation could be appeared for example in
electric discharges or electric arcs studies. For
this purpose, E. Moreau and O.Vallee considered
a constant electric field applied to a plasma in
which it was assumed the existence of a constant
electron flow (created for example by electrodes
system and depending of applied electric field),
which may be interpreted as a source term. More-
over, the plasma was assumed to be composed of
electrons and motionless ions.

After some reasoning a one dimensional Burgers
like equation of the local electric field Eloc was
appeared with an elastic forcing term

∂tEloc = ν∂xxEloc + Eloc∂xEloc − xS + c(t).

Finally the possibility to derive a new equation of
evolution for the electric field held to the Poisson
equation was shown.

It seems interesting that probably the first appear-
ance of the Burgers like equation in plasma model
of instability saturation by resonant mode cou-
pling was considered by E. Ott, W. M. Manheimer,
D. L. Book and J. P. Boris in [3].

Their model was in general form:

∂tu+ α1u∂xu+M(u) = 0,

where M(u) is a linear operator given by

∞∫
−∞

M(u)e−ikx dx = iω(k)

∞∫
−∞

ue−ikx dx,

where ω(k) is a dispersion relationship. It was no-
ticed that in case

ω(k) = i(α3 − k2α2),

a Burgers like equation was obtained in the fol-
lowing form

∂tu+ α1u∂xu− α2∂xxu− α3u = 0.

A variety of different instabilities that can be stabi-
lized nonlinearly by resonant mode coupling were
examined. A steady state behaviour of Burgers
like equation was examined by a phase plane anal-
ysis also.



Finally, a simple electro hydrodynamical model
describing lightning was proposed in [1]. A gen-
eral self—similar solution to the nonlinear equa-
tion was obtained in one dimensional case. It was
demonstrated that the uniform electric field and
charge density distributions in a cloud could be-
come unstable. A virtually periodic structure of
the field and charge densities is formed by spatial
redistribution.

Afterwards a numerical solution of Burgers like
equation by wavelet Haar method was considered
in static case [4].

The extension in two dimensional case of the
model of such kind instability [1] is derived in sec-
tion 2.

2. GOVERNMENT EQUATIONS

Let’s consider a two–component fluid model of
electron and ion fluids. The government equations
in vector form are the following:

eneE+ kT∇ne +mneνv = 0, (1)

∂tne +∇(nev) = 0, (2)

ε0∇ ·E = −4π(ne − ni). (3)

The first equation (1) is a balance equation, the
second one (2) is a continuity and the third (3) is
a Gauss law. Under the following dimensionless
variables

z =
ne
ni
, u =

ve
v?
, l =

2kT

eE?
, y =

E

E?
,

ξ =
x

l
, η =

y

l
, v? =

eE?
mν

, β2 =
2P0

D?
,

τ =
t

t?
, t? =

l

v?
, (4)

system of Eqns.(1)–(3) transform into

∇z + (y + u)z = 0, (5)

∂τ z + ∇ · (zu) = 0, (6)

∇ · y = 0.5β2(1− z). (7)

There are two different ways of reduction of (5)–
(7) The dimensionless system of equations (5)–(7)
could be reduced to vector equation (14) which ,
or it could be transformed into system (18), (19).
From Eq.(3) obtain:

z = 1− (2/β2)∇ · y, (8)

∇z = −(2/β2)∇(∇ · y), (9)

∂τz = −(2/β2)∂τ (∇ · y). (10)

From Eq.(1) obtain:

zu = −zy −∇z, (11)

∇ · (zu) = −∇ · (zy)−∇2z. (12)

Substituting the Eqns.(8)–(12) into (6) obtain the
following:

(−2/β2)∂τ (∇ · y)−∇ · (zy +∇z) = 0,

∇ ·
(
(2/β2)∂τ y + zy +∇z

)
= 0,

∇ ·
(
∂τ y + (0.5β2 −∇ · y)y −∇(∇ · y)

)
= 0. (13)

Denote

F := ∂τ y + (0.5β2 −∇ · y)y −∇(∇ · y),

then rewrite (13) as

∇ · F = 0. (14)

Obviously equation (14) is a divergent equation.
So, there could be a set of cases.

Case A (partial): F = −g is partial and Eq. (14)
becomes follows in vector form

∂τ y = ∇(∇·y)+y(∇·y)− 0.5β2y+g, (15)

where source g = (g1, g2) depends on τ , so
g = g(τ).

According to vector operators in cartesian:

∇ · y = ∂ξy1 + ∂ηy2,

∇(∇ · y) = (∂ξξy1+∂ξηy2; ∂ξηy1+∂ηηy2),

y(∇ · y) = (y1∂ξy1; y2∂ηy2),

∂τy = (∂τy1; ∂τy2),

obtain from (15) a system of two scalar coupled
Burgers like equations with linear −0.5β2y and
source term

(
g = (g1; g2)

)
:{

∂τy1 =∂ξξy1 + ∂ξηy2 + y1(∂ξy1 − 0.5β2) + g1,

∂τy2 =∂ηηy2 + ∂ξηy1 + y2(∂ηy2 − 0.5β2) + g2.
(16)

Case B (general): ∇ · F = 0 is general. Define
scalar function s = s(ξ, η) as s = ∇ · y, then

∇·F ≡ ∂τs−∇2s− s2−y · (∇s)+0.5β2s = 0,



and equation (14) transform into system of two
scalar equations{

∂τs = ∇2s+ s2 + y1∂ξs+ y2∂ηs− 0.5β2s,

∂ξy1 + ∂ηy2 = s.
(17)

Let’s obtain from (5)

zu = −zy −∇z,
∇ · (zu) = −∇(zy)−∇2z,

∇ · (zu) = −z(∇ · y)− y · (∇z)−∇2z,

and substitute in (6)

∂τz = ∇2z + y · (∇z) + 0.5β2z(1− z), (18)

∇ · y = 0.5β2(1− z). (19)

3. NUMERICAL SIMULATION

The system of coupled equations (16) could be
solved numerically in square

(ξ, η) ∈ [0, 10]× [0, 10]

under some conditions.

If we define source functions as follows

g1(x, y) = −0.01x, g2(x, y) = −0.01y,

set parameter β and final time

β =
√

2, tfin = 10,

then the initial distributions of y1(ξ, η, 0), y2(ξ, η, 0)
will be like in Fig. 1–3.

Fig. 1: Initial distribution of y1(ξ, η, 0)

Fig. 2: Initial distribution of y2(ξ, η, 0)

Fig. 3: Initial distribution of |y| at t = 0

Afterwards, the final distributions of the dimen-
sionless y components y1(ξ, η, tfin), y2(ξ, η, tfin)
are shown in Fig. 4–6.

Fig. 4: Final distribution of y1(ξ, η, tfin)

Fig. 5: Final distribution of y2(ξ, η, tfin)



Fig. 6: Final distribution of |y| at t = tfin

Density function z(ξ, η, t) could be found
from Eq. (8). Initial and final distributions
of density function are shown in Fig. 7, 8.

Fig. 7: Initial distribution of z(ξ, η, 0)

Fig. 8: Final distribution of z(ξ, η, tfin) with β =
√

2

Parameter β control the gradient of z(ξ, η, t)
distribution at time. If it goes to infinity
β → ∞, then z(ξ, η, tfin) → z(ξ, η, 0).
For example, if β = 10 the final dis-
tribution of z(ξ, η, t) is shown in Fig. 9.

Fig. 9: Final distribution of z(ξ, η, tfin) with β =
√

10

Summarize, the final distribution of the charged
medium density z(ξ, η, t) increase on the border
ξ = 10, η = 10 of the square.
The distributions presented in Fig. 8, 9
were computed in a quarter of a square
[−10, 10] × [−10, 10] and the total
density function is shown in Fig. 10.

Fig. 10: Total final distribution of z(ξ, η, tfin) in square
[−10, 10]× [−10, 10]

4. CONCLUSION

• General system of equations (5)—(7) was re-
duced to a divergence type equation (14) and
system (18), (19).

• Equation (14) was solved numerically in partial
case A and the final distribution of the charged
medium density z(ξ, η, tfin) was found.

• Such type of the final distribution z(ξ, η, tfin)
is thought to be a part of two dimensional peri-
odic structure.

• Note that all suggestions are performed in three
dimensions also.
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