
INTEGRATED MODELING ENVIRONMENT “VIRTUAL
DISCHARGE” FOR GAS DISCHARGE STUDY

A. G. SHISHKIN¹ AND S. V. STEPANOV²*

1,2 Dept. of Computational Mathematics & Cybernetics, Moscow State University, Vorobjovy

Gory, 119992, Moscow, Russia
* sergey.v.stepanov@gmail.com

ABSTRACT

Nowadays the gas discharges are well-studied
and there are a number of application codes for
plasma simulation. The key problem is that such
codes are often proprietary and poorly
documented. Another problem is that such codes
cannot be used together due to different
input/output data formats. If some plasma
simulation code is not an open source one, the
only way to reuse its numerical results is to write
an application or script which will convert the
output data to the proper format.

“Virtual Discharge” modeling environment was
developed to allow users to build complicated
modeling cases only with several mouse clicks
by the help of simply-to-use graphical user
interface. Having a chance to configure different
code calculation chains and to define data
convertors, a user can easily reuse third-party
plasma simulation codes saving his time.

“Virtual Discharge” is developed with Java so
it’s a cross-platform application. Being
integrated with ScopeShell data analysis and
visualization integrated shell [1] and Tadisys task
distribution system [2] it is a powerful tool for
complicated plasma simulation cases, which also
supports distributed computations.

1. INTRODUCTION

Working on numerical experiments and code
implementation, most users encounter the same
difficulties - they need to implement custom
input-output data convertors, setup and configure
visualization software, increase calculation
performance and throughput (fig. 1). In case of
multi-model and multi-parameter experiments

the problem becomes much more complicated as
a user has to define input parameter arrays per
setup and run all the setups sequentially. The
more setups and configurations defined, the more
difficult monitoring and analysis tasks are. It
should be outlined that most numerical codes,
that may be coupled with user’s self-developed
codes, don’t provide any graphical user interface
(GUI) and monitoring functionality.

Fig. 1 User interaction with modelling software

On the other hand, some modeling software
solutions and codes are proprietary ones built
with an “all-in-one” paradigm.

The problem is that such software solutions are
not customizable at all, a user cannot couple it
with some other codes to perform extra
calculations and extract some data. At the same
time, some of them are presented only to a few
platforms and operating systems (OS), so it’s
rather difficult to use it.

2. “VIRTUAL DISCHAGE” MODELING
ENVIRONMENT

To overcome all the problems mentioned above
the “Virtual discharge” solution was designed
with the following key requirements and
principles:

• Allow users to couple third-party
numerical codes and solutions without
custom data convertors development;

• Implement an easy-to-use graphical user
interface (GUI);

• Support data monitoring, analysis and
visualization;

• Support distributed parallel compu-
tations.

The aim is to develop a solution allowing to
couple all the components together and make its
usage transparent for a user.

Fig. 2 “Virtual discharge” coupling as a main principle

At the same time, the described approach should
have easy-to-use intuitive UI.

“Virtual discharge” developed in Java so it’s a
platform-independent software that may be used
in any environment. Third-party software and
codes are integrated via special modules –
computational blocks. Once integrated and
configured, such blocks can be easily reused and
shared with other users with the help of ImpEx
module (Import-Export).

The main idea is to allow user to setup
computational experiment just in "two mouse
clicks". Having predefined computational blocks

and built-in modules, one can easily setup
computational chains with a few mouse clicks in
“drag-n-drop” mode via intuitive graphical user
interface. A number of presets – a set of
parameters and input data – can be defined for
each computational block. A user has an ability
to simply drag and drop needed blocks and
choose a proper preset.

Fig. 3 “Virtual discharge” graphical user interface. Calculation

chains.

It should be mentioned, that a number of
computation chains can be defined and grouped
in a project. That approach helps user to easily
work with multi-modal and multi-parameter
tasks. Each computational chain can be easily
cloned or exported with the ImpEx module, so
all the defined chains can be easily shared with
other users or stored in any version control
system (VCS) since it is a simple XML file.

Calculation blocks sequence is defined in “drag-
n-drop” mode just with a couple of mouse clicks
connecting blocks with a “one-way” line. If a
user needs to define an iterative calculation
process, then it’s necessary to configure a “stop
condition” with the help of a predefined block.

Each computational block is coupled with
ScopeShell – an environment for data analysis,
processing and visualization [1]. Defining file
masks, convertors and formats, it’s easy to
process a large set of files, that may be produced
as an output data by any computational code
(fig. 3). At the same time, ScopeShell allows
user to preprocess input data with a set of
commands if needed.

ScopeShell can be used in two modes –
embedded or standalone ones. Embedded mode
allows to use all the functions of the software
just in the same environment. At the same time,
it requires to store all the configuration files

locally and it uses local resources, so, such
approach may lead to a significant performance
degradation in case of a large computation chain
with a number of blocks with local ScopeShell
instances. Standalone mode allows user to
configure and run a ScopeShell instance
remotely, not only at a local machine, and
communicate with an instance via special
protocol. Using such approach, it’s possible to
significantly decrease hardware resource usage.
On the other hand, if a large set of input and
output data is processed, it may take much time
to transmit all the data from one machine to
another over a network, so, a network throughput
becomes important. One of the mentioned
approaches should be chosen for a better
performance and usability depending on the data
being processed and infrastructure configuration.

Fig. 4 ScopeShell graphical user interface.

Data visualization is performed with a number of
third-party opensource packets. By default,
“Virtual Discharge” is integrated with the
GnuPlot packet [3], but other visualization tools
can be easily integrated with the “Virtual
Discharge” environment with the help of the
integration module.

Each computational block can be calculated both
locally and remotely. When a calculation chain is
large, most of its computational blocks are
supposed to be calculated remotely to
significantly increase overall computational
experiment performance. It should be underlined,
that remote calculation should be used wisely.
For example, if a computational task is simple
enough, its possible that data transmission and
remote setup overhead will be significantly more
noticeable than the task calculation time. The
best practice to use remote approach is to split
computational blocks, that can be calculated in a

parallel mode (or even concurrently), and run its
calculations on different servers. In such case,
performance will improve close to a linear mode.

Distributed calculations are supported via
Tadisys software [2]. Tadisys is a client-server
application that implements two key approaches
to support distributed calculations. The first one
is a custom solution to run computational tasks
remotely. All the data transformed via sftp
protocol to remote servers, after that, startup
scripts are called. User has an ability to monitor
remotely running processes and get results as
soon as calculations are done. The second
solution is built atop of the Hadoop project [4]
and its subprojects. It implements BSP (Bulk
Synchronous Parallel) computing paradigm,
which allows run remote tasks easier and more
effectively.

When calculation chains are defined and
configured, one can start its calculation in GUI
mode. While up and running, a user can monitor
the ongoing process or processes, extract current
results and visualize it.

3. GAS DISCHARGE STUDY

For simplicity, one case of studying dual-
frequency gas discharge based on a two-
dimensional fluid model is described.

Modelling task can be presented as a sequence of
computational blocks – first, it’s necessary to
obtain electron transport parameters (ETP),
electric field, electron density and its flux etc
(fig. 5). All the calculation process can be easily
defined and configured in the “Virtual
Discharge” environment.

Fig. 5 Dual-frequency discharge numerical experiment sequence

Electron Transport Parameters (ETP) are
obtained with Bolsig+ solver [5], which is widely
used for plasma discharge study. “Virtual
Discharge” is integrated with Bolsig+ solver out-
of-the-box, so ETP parameters can be easily
obtained. When ETP parameters are obtained,
the main iterative calculation process can be
started. All the key parameters, such as electron
and positive and negative ions densities, fluxes
and electron energy are obtained with a self-
developed code. While a calculation process is
running, a user can obtain all the results,
visualize it and monitor the ongoing calculation
task progress (fig. 6).

Fig. 6 An example of a defined calculation chain for dual-frequency

discharge study

“Virtual Discharge” environment is extremely
useful when working with multi-model and
multi-parameter tasks. Once the calculation chain
is defined, it can be cloned, after that, it is
possible to change some input data and
parameters and run all the chains at once. When
all the tasks are done, one can visualize, analyse
and process all the results and compare it. Such
approach gives a number of important
parameters – for example, the dependency of key
plasma parameters on a reactor configuration can
be studied.

4. CONCLUSION

As shown above, “Virtual Discharge” modelling
software may significantly increase overall
numerical experiments performance. With the
help of an easy-to-use graphical user interface,
integration with data analysis, processing and
visualization software and implementation of
parallel distribution calculations it is possible to
perform numerical studies in a more effective
way.

5. REFERENCES

[1] D. P. Kostomarov, F. S. Zaitsev, A. G.
Shishkin, and S. V. Stepanov. “The ScopeShell
Graphic Interface: Support for Computational
Experiments and Data Visualization”. Moscow
University Computational Mathematics and
Cybernetics. Vol. 34. Pp. 191-197. 2010.
[2] D. P. Kostomarov, F. S. Zaitsev, A. G.
Shishkin, S. V. Stepanov, and E. P. Suchkov.
“Automating Computations in the Virtual
Tokamak Software System”. Moscow University
Computational Mathematics and Cybernetics.
Vol. 36. Pp. 165-168. 2012.
[3] GnuPlot website http://www.gnuplot.info
[4] Hadoop website http://hadoop.apache.org
[5] Bolsig+ Solver website
http://www.bolsig.laplace.univ-tlse.fr

