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ABSTRACT 

The hydrodynamic model of movement of the 
charged particles in a stream, expanding 
applicability of the initial model was studied. In 
present paper the analysis of various 
approximations 1D of model is carried out and 
phase trajectories of the electric field evolution 
induced by a stream and density of particles in a 
stream at various speeds of excitations are 
constructed. 

1. INTRODUCTION 

Atmospheric discharges are surprisingly 
interesting phenomena that occur in the surface 
layers of thunderclouds towards the ground, and 
rising from the tops of the clouds through the 
troposphere to the ionosphere - sprites, blue and 
gigantic jets, elves. Scales of discharges cover 
areas from 12-20 km up to 40-90 km [1-3]. At 
the heart of all these phenomena is the process of 
charge separation, the growth of the electric field 
and the subsequent breakdown of air. By itself, 
this phenomenon is random in time and space 
character, but preparation of the charge 
separation and subsequent growth of the electric 
field is a natural process, the cause of which is a 
set of different physical factors. The main 
processes leading to the emergence of linear 
lightning, suggested two mechanisms described 
in great detail, for example, in the excellent work 
[2]. In one of them conventional breakdown on 
the electrons warmed in electric field is offered. 
The second mechanism – breakdown on run-
away electrons – is energetically more favorable 
as it implies much smaller values of a field for 
acceleration of electrons and creation of 
avalanches. In this paper, we propose a new 
approach to the explanation of the physical 
mechanism of discharge, based on consideration 
of the hydrodynamic flow of charged particles in 

a thundercloud, caused by natural causes of 
convection and capture of charged particles by 
the ascending streams in electric field of the 
Earth. The existence of hydrodynamic flow of 
charged particles in a weakly ionized gas can 
lead to instabilities in relation to the non-uniform 
charge distribution in the cloud, increase of the 
electric field and the occurrence of local regions 
in which the electric field exceeds the threshold 
value necessary for the breakdown at a given 
altitude. 

2 . THEORY 

We assume that we are dealing with a dense 
weakly ionized gas consisting of electrons, ions 
and uncharged particles. Based on estimates of 
the concentration of charged particles about 103 
cm-3 and assuming approximately constant 
temperature in a layer of the ground atmosphere 
at the altitude of thunderclouds, it is possible to 
estimate the Debye radius rD = vT/n  4 cm that 
exceeds distance between the charged particles 
and therefore at smaller distances there is no 
Coulomb shielding of the charged particles. Here 
v2

T  = kT/m – the thermal velocity of electrons, 
and n = 1012 s-1– the characteristic frequency of 
fluctuations of the charged particles. As the main 
equations describing dynamics of streams of 
charged particles, we use Euler's equation, the 
equation of continuity and Poisson's equation for 
model of weakly ionized gas. In a thundercloud 
in the field of the Earth we will consider initial 
distribution of the charged areas negative in the 
lower part and positive in the top part, although 
the observed charge distribution is more 
complicated [2,4]. Temporal and spatial 
distribution of the electric field in the one-
dimensional case will then be described by the 
system of equations: 
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Here the following designations are entered: е – 
charge of a particle, m – its mass,  – the particle 
speed ,  - the particle collision frequency with 
all scattering centers, n – concentration of 
particles, N0 – concentration of particles of an 
opposite sign, 0 – the speed of neutral particles, 
0 – dielectric permeability of media, P – gas 
pressure, in adiabatic approximation. We assume 
initially isothermal process at scales within the 
cloud and in times previous to the formation of 
the leader. Then pressure can be presented in the 
form of P = kTn. In this approach we don't 
consider mechanical viscosity, but electro 
dynamical viscosity is considered partially, by 
introduction of the member of collisions 

)( 0 mn . Recharge mechanism of neutral 

particles and ions can be accounted for by adding 
the collision integral to the right side of the 
equation continuity. As a first approximation, we 
will not consider the process of recharge and will 
take it into account at further consideration. We 
will write down system (1) in a dimensionless 
form, using the following designations:  = x/l, 
= t/0, y = eEl/(kT),  = nl3, 0 = N0l

3, u = 
/(l), u0 = 0/(l), where -  
characteristic distance at which energy of 
Coulomb interaction is equal to thermal energy 
of particles; 
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which non equilibrium concentration of particles 
is leveled due to diffusion (D – the speed of 
diffusion, T – the thermal speed of particles, 
D=kT / (m) – diffusion coefficient). The 
resulting system can be written as: 
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For the dimensionless density of a stream of 
particles we use j=Jl2/(e) designation is entered. 
Using the continuity equation, we exclude from 
this system of equations speed. After simple 
transformations we obtain the system of 
equations with two variables - the particle 
concentration and the magnitude of electric field 
in a gas flow: 
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     (3) 
Here we used y0 = 0u0 designation. The 
integration constant с1(),  received by us after 
integration of the equation of a continuity on 
coordinate is defined by values of density, speed 
of a stream and change of electric field on 
thundercloud border a ratio: 
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This value is the continuous function of time 
becoming zero on the border, and nonzero 
outside of it due to the fact that change of electric 
field at a given point in space during a period is 
compensated by density of a stream of the 
charged particles through thundercloud border. 
Tangential components of a rotor of a vector of 
magnetic field at the border do not undergo the 
jump, and will not affect the one-dimensional 
motion of the current density. We will enter the 
new  variable associated with old variables by 
coordinate of  and time of  by relation of  =  
- V. Considering ratios 

 d

d
V

d

d









,  

we will write down system (3) in its final form: 
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(5) 
The system (5) describes distribution of a stream 
density and electric field evolution in one-
dimensional approximation and at the set 
function с1(), defined by the conditions on the 
thunderstorm border. It allows to calculate 
distribution of electric field and density of a gas 
stream with a change in a parameter V – speed of 
excitation of a field concerning the system of 
coordinates moving with a speed of a gas stream. 
In the approximation of 0 = 0 the system can be 
integrated to obtain the equation
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which has the decision 
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)(),( xYxJ mm  - Bessel functions of the first and 

second kind. 
2

2


n
q , in our case n = 1. The 

dependence of an electric field magnitude as 
functions of coordinate is shown in Figure 1. 
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Fig. 1.The dependence of z () at values of the constants C1 = 1.2, 
C2 = 2.3, found from boundary conditions. The constant b = 10, a 

variable  runs values from 0 to 10. 

In the resulting approximation, we have a 
significant increase in the electric field at the 
stream movement, and there are gaps in the field 
with poles, condensing with the increase of the 
stream coordinates. We will consider system (5) 
without any approximations. As the first step we 
express dimensionless concentration of () 
from the second equation and substitute in the 
first equation. Then we receive the equation 

y(A1y
2 +B1y +C1) = (A2 + y) y

3 +(B2 +y)y
2 + 

(C2 +y)y + D  (8) 

If we enter the new variable w (y)=y, including 
y as an independent variable then the equation 
(8) can be write in a form: 

wyw(A1w
2 +B1w+C1) = (A2 + y) w3 +(B2 +y)w 2 

+ (C2 +y)w + D  
If we rewrite it in a form 

dy[(A2 + y) w3 +(B2 +y)w 2 + (C2 +y)w + D]
 = dw [w(A1w

2 +B1w+C1)],  (9) 

that it can be integrated after finding of an 
integrating multiplier. We will not write the 
solution of this equation because of its 
complexity, and present only the graphs obtained 
by us in solving this equation in  y().  Figures 2 
- 5 show the dependences of the given 
concentration, magnitude of electric field from 
the coordinates, entry conditions and various 
values of excitation velocity in a stream of 
ionized gas. 
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Fig. 2. Evolution of electric field magnitude in a stream (red line) 
and the derivative of the field in a stream (the blue line) with the 
speed of excitation in a stream of V = 2265.32, constructed in the 

range of variation of the specified coordinate of  = [0 – 200]. 
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Fig. 3. Phase trajectory of the electric field magnitude y 

corresponding to figure 2 data y’ (y) at values of the specified 

coordinate of  = [0 – 200]. 
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Fig. 4. Evolution of a stream density (the red line) and the 
derivative of a stream density (the blue line) at value of speed of 

excitement in a stream of V = 2265.32 and areas of change of the  
variable = [0 – 1000]. 
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Fig. 5. Phase trajectory of a stream density of ’() corresponding 
to figure 4 data at values of the specified coordinate of   = [0 – 

1000]. 

Amplitude of electric field increases by 5 – 7 
orders, remaining limited as the speed of stream 
increases. As the results of our research it is 
possible to make the conclusion that the used gas 
dynamic model of formation of the linear 
atmospheric discharge can even describe the 

emergence of the leader connected with 
transformation of kinetic energy of a stream in 
energy of the discharge at the expense of creation 
of high electric fields in a stream in the 
considered one-dimensional case. 
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